Archive for December, 2017

Arduino Iambic Keyer – 2017

Last spring I started doing what I call “Morse Walking”. Going out with headphones on, beeping morse code. I’m doing this hoping I will get good enough at morse to actually use it on the air without making a fool of myself. I previously made two battery operated Arduino based keyers here and here that can generate random morse characters. But they are awkward, the 2015 version requires an external battery and the 2016 model won’t fit in my pocket. Obviously I needed another project.

Arduino Feather keyer

Arduino Feather keyer


I decided to use an Adafruit Feather, it has an Atmel 32u4 processer, built in USB interface, a charger/converter for a 3 volt lithium battery, and plenty of pins brought out. The idea was to cut down the previous keyer software to fit the 32u4 equipped with only the hardware I needed for battery powered practice. Like many of my projects, putting it all into a small box proved to be difficult. Not many parts in the schematic but that Altoids tin is only 2 1/4″ x 1 1/2″ and about 1/2″ deep.

Arduino Feather Iambic Keyer Schematic

Arduino Feather Iambic Keyer

Note the unusual wiring at the headphone jack. Ring is grounded while tip carries the signal. Sleeve is not connected. This puts the two headphone elements in series and presents a higher impedance to the output circuit. The ring normal contact can then signal power enable to the Feather when the phones are plugged in.

I sawed about a quarter inch off the breadboard end of the Feather to make it fit, along with two phone jacks, in an Altoids Small tin. I wired up the Feather along with a quadrature rotary encoder which I thought would be cool to use as a volume control. Porting the previous keyer sketch to the 32u4 proved more difficult than I expected. The encoder required major changes to the keyer code as volume control is now in software and requires manipulation of the sine wave synthesizer tables. I got that part mostly working but set the project aside in May.

So now it’s November and I’ve picked up the little keyer again. The software has been revamped and now has these features:

  1. Characters to be sent are buffered in an asynchronous circular queue so memory buttons or keyboard characters can be “typed ahead”.
  2. USB serial terminal is supported as a keyboard for sending or function programming.
  3. Paddle generated morse is interpreted and printed as ASCII letters on the serial terminal.
  4. Four programmable memories available with 251 character capacity each.
  5. Memories programmable from serial terminal or from the paddles.
  6. Random code practice modes, letters, letters and numbers, letters numbers and punctuation.
  7. Adjustable character spacing in code practice mode (Farnsworthiness).
  8. Morse character speed settable 10 to 45 WPM.
  9. Sidetone frequency settable 100 to 1200 Hz.
  10. Synthesized sine wave sidetone with leading and trailing edge envelope shaping.
  11. Memories and operating parameters stored in EEPROM and easily reset to defaults.
  12. Stand alone operation from LiPo battery.

I went for an hour walk today with the keyer in my shirt pocket and it performed flawlessly so I consider it done.

This is a photo of the unit with battery removed.

Arduino Feather keyer battery removed

Arduino Feather keyer battery removed


I had to move the JST connector to the side to get clearance, the battery would not fit under the rotary encoder. There are four memory buttons, plus the back switch on the encoder used for Function. I’m using my usual analog read routine to debounce the button switches. Metal cap switches from Adafruit, work much better than the 6mm plastic buttons I used in previous versions.

You can see here the battery just fits.

Arduino Feather keyer with battery

Arduino Feather keyer with battery


I spent quite a bit of time working on the waveform generation setup. The encoder routine generates a number 0-64 which is used to scale the synthesizer waveform. Four 16 byte amplitude tables must be regenerated in RAM each time the volume is changed. Initially the sine waves were horribly distorted so I made a spread sheet helped to see what was happening. I was able to work out code that produced a good stepped morse element.  There is very little audible clicking now at beginning or end of the morse elements.

This photo is a dit at about 25 WPM.

Arduino Feather keyer waveform

Arduino Feather keyer waveform

The software, detailed operating instructions, schematic, and spreadsheets can be downloaded from Dropbox.
Any future revisions will appear here

Version 1.0 12/3/2017

Version 1.2 12/6/2017 Was running out of memory, rearranged startup and moved stuff to PROGMEM

Jim Harvey –